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Abstract. Periodic and chaotic behaviour of the Bonhoeffer-van der Pol model of a nerve 
membrane driven by a periodic stimulating current a,  cos w f  is investigated. Results show 
that there exist ordinary and reversed period-doubling cascades and a mode-locking state. 
At low driving amplitudes a , ,  there are period-doubling and chaotic states, but no impulse 
solutions. When a,  is larger than a, = 0.749, there are chaotic, reversed period-doubling, 
and mode-locking states and there also exist impulse trains. A mode-locking state with 
period 4 over a very large range of amplitudes is also found. At a,  = 1.7059 the system 
goes back to a one-period state. 

Theoretical and experimental studies of periodically forced non-linear systems have 
been of interest from a number of points of view. A prominent example of such a 
system is the van der Pol oscillator which is one of the most intensively studied in 
non-linear dynamics and serves as a basic model of self-excited oscillations in physics, 
electronics, biology, neurology and in many other fields [ 1-31. I t  is believed that many 
biological rhythmic processes are related to this oscillatory system. 

The Bonhoeffer-van der Pol (BVP) model for an excited nerve membrane contains 
two variables, and describes the propagation of an electrical impulse or voltage pulse 
along the membrane of a nerve cell [4,5]. I t  may be presented as two equations: 

i = x -x'/3 - y +  I (  t )  

j = C(X + U - by) .  ( 2 )  

Here x is the membrane potential, y is a variable representing the time constant 
of recovery of the membrane from stimulation, I ( [ )  is the stimulating current and is 
considered as a fixed input function in this paper. The terms a, b, and c are membrane 
radius, the specific resistivity of the fluid inside the membrane and the temperature 
factor, respectively, and are positive constants which satisfy the inequalities 

b < l  ( 3 )  

3a +2b 3 3 .  (4) 

In the absence of periodic stimulating current, i( t )  = 0, equations (1) and (2) have 
been studied by Kawato and Suzuki [ 6 ] ,  Okuda [7] and Treutlein and Schulten [8]. 
All of these studies were concerned with the stability of in-phase and antiphase 

t Permanent address: Physics Department; the Center of Nonlinear Dynamical Systems, Nanjing University, 
Nanjing, People's Republic of China. 
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solutions, threshold and shaping action and the effect of noise, respectively. Recently, 
a study of (1) and (2) under the action of a periodic stimulating current I( t )  = a1 cos wt, 
o = 1.0 was made by Rajasekar and Lakshmanan [9], in which period-doubling and 
chaotic behaviour was found with the amplitude a, taking values up to 0.74. However, 
they did not investigate fully the detailed bifurcation and chaotic behaviour and it is 
natural to ask what happens when the amplitude is increased. That is, what new 
characteristic phenomena can be expected in the parameter space? A detailed bifurca- 
tion and chaotic behaviour for the increasing amplitude is clearly needed. 

In the present letter we want therefore to give examples of bifurcation diagrams 
of the driven BVP oscillator model which show complete period-doubling cascades. 
A maximal Lyapunov exponent A ,  is used to describe the average rate of divergence 
of nearby trajectories. 

For characterising the bifurcating and chaotic behaviour we consider bifurcation 
diagrams in figuie 1 which show the degree of refraction Y, against the excitation 
amplitude a,,  i.e. the stroboscopic section of y at a fixed phase I ( t )  = 0 against a , .  
All parameters are held constant at a = 0.7, b = 0.8, c = 0.1, which are the typical values 
used by FitzHugh for the biological meaning [4,5], w = 1.0 (here we only give the 
result for w = 1.0) and 0 < a, < 1.8. All the numerical calculations are done by using 
a modified fourth-order Runge-Kutta method. For each value of a,,  we use the final 
point of the trajectory of the previous a, value and discard 200 periods since they 
might involve a transient. We have also done some calculations with smaller steps 
and a longer transient, finding that the difference is very small. The Lyapunov exponent 
is calculated by using the method due to Benettin et a / [  101. All the values are calculated 
with double precision. 

From figure 1, we can see that periodic oscillations, chaotic and mode-locking 
oscillations occur. As a ,  increases from zero up to 0.6070, a period-1 state is observed 
and a simple period-2 bifurcation occurs at a, = 0.6070. Then period doubling is 
observed with increasing a,. At a,, = 0.7182 the period-doubling and band-merging 

0 

Figure 1. Bifurcation diagrams of the BVP model equation showing projections of the 
attractors in the stroboscopic section onto the Y, against the excitation amplitude a , .  The 
step of a, is 0.005. For each step 350 points are plotted after eliminating 200 transient 
periods. 
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points accumulate and, in the chaotic region above a,,, we find small windows of 
higher-period cascades with periods q x 2", where q is an integer, and n denotes the 
degree of the period doubling of a fundamental periodic orbit of period q. There 
results cannot be found in [9], and the period-doubling accumulation is not at a, = 0.74, 
but at a smaller value a, = 0.7182t. Two sections of figure 1 showing details of a 
parameter interval between a, = 0.7 and a, = 0.8, and of an interval between a, = 1.09 
and a, = 1.29 are given in figures 2 and 3, respectively. 

Figure 2. A section of figure 1 showing detailed bifurcation and chaotic behaviour of the 
parameter interval between a, = 0.7 and a, = 0.8. The step of a, is 0.0002. For each step 
350 points are used after eliminating 200 transient periods. 

From figures 1-3 we see that there are ordinary and reversed bifurcation and chaotic 
regions, as well as periodic windows. Over a very long range a, E [0.7815, 1.0921, a 
mode-locking state with period 4 is also observed. Finally, for a, > 1.302 one can see 
that there exist reversed period-doubling bifurcations, and at a, = 1.7059 the system 
goes back to a period-1 state (see figure 1). 

In figures 4,5  and 6, we show the largest Lyapunov exponent against the amplitude 
a, in the region corresponding to figure 1. It is obvious that we have positive Lyapunov 
exponents for the chaotic state, and negative ones for the periodic state even for the 
small periodic windows. For the periodic state all trajectories lie on a limit cycle within 
the three-dimensional phase space. 

As mentioned above, the bifurcation and chaotic behaviour of the BVP model system 
is very complicated. From biology, we know that a basic property of the nerve 
membrane is the existence of a threshold to stimulation. A stimulus above a certain 
value, a, (the threshold), produces a nerve impulse. The electrical component of the 
impulse (which is a complex electrochemical process) is a pulse-shaped action potential 
lasting about a millisecond. Stimuli below threshold, subthreshold, produce no impulse. 

t Notice that in [9], the accumulation point was claimed to be at a, = 0.74, and most of the structure to be 
described below was missed. 
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Figure 3. A section of figure 1 showing detailed bifurcation and chaotic behaviour of the 
parameter interval between a1 = 1.09 and al = 1.29. The step of a, is 0.0002. For each step 
350 points are used after eliminating 200 transient periods. 

Figure 4. The largest Lyapunov exponent against the excitation amplitude a1 corresponding 
to figure 1. 



Letter to the Editor L63 1 

0.20 , 

-0.20 1 

-0.40 ' 
0 70 0 80 

a. 

Figure 5. The largest Lyapunov exponent against the excitation amplitude a,  corresponding 
to figure 2. 
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Figure 6. The largest Lyapunov exponent against the excitation amplitude a, corresponding 
to figure 3. 



L632 Letter to the Editor 

The impulse is the indivisible unit of nervous activity, and its presence or absence in 
a nerve membrane, according to the magnitude of the stimulus, constitutes the threshold 
phenomenon [4,5]. From figures 1-3, we see that such a threshold for the stimulus 
e+ts at a, = 0.7490. When a ,  < a, we have only small amplitude synchronised oscilla- 
tions, subthreshold responses to the stimulus, which undergo a transition to chaos 
from period-doubling, and there are no impulses (the definition of an impulse is a 
large pulse-shaped action potential, not a subthreshold response ). When just past 
a ,  = a, we see a bifurcation from a subthreshold chaotic attractor to a superthreshold 
attractor. This bifurcation is called an interior crisis by Grebogi et a1 [ l l ] ,  and is a 
saddle-node bifurcation. 

When a, > a, the superthreshold responses undergo chaos, reversed period-doub- 
ling window, chaos, reversed period-doubling bifurcation to period 1 .  This period-n 
behaviour corresponds to the n-shaped impulse ( n different wave-shaped impulses) 
trains which code the signal of single nerve fibres in neural tissue [XI, and the chaotic 
state of the BVP model corresponds to the infinite-shaped-impulse trains. 

To summarise the results presented above we concluded that the ordinary and 
reversed period-doubling bifurcation, as well as chaotic behaviour is due to the 
interaction between the BVP oscillations and the periodic stimulating current. The 
mode-locking state is due to the equilibrium of the BVP oscillations and the periodic 
stimulating oscillations, and corresponds to 4-shaped-impulse trains. Finally, this 
mode-locking of BVP (equations (1) and (2 ) )  is even stronger than in the case of van 
der Pol’s equation [3]. 

A more detailed calculation and analysis will be given in another publication. 

I thank Professor Xixian Yao for introducing me to work on non-linear physics and 
Professor D F Brewer and Dr D S Betts for inviting me to work at Sussex University, 
and Dr A L Thomson and Dr Renzhi Ling for helping me with this work while staying 
there. All computations have been carried out on a VAX-8530 in the Computer Centre 
of Sussex University. 
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